3.11.43 \(\int \frac {1}{(1-x)^{5/2} \sqrt {1+x}} \, dx\)

Optimal. Leaf size=41 \[ \frac {\sqrt {x+1}}{3 \sqrt {1-x}}+\frac {\sqrt {x+1}}{3 (1-x)^{3/2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.00, antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {45, 37} \begin {gather*} \frac {\sqrt {x+1}}{3 \sqrt {1-x}}+\frac {\sqrt {x+1}}{3 (1-x)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((1 - x)^(5/2)*Sqrt[1 + x]),x]

[Out]

Sqrt[1 + x]/(3*(1 - x)^(3/2)) + Sqrt[1 + x]/(3*Sqrt[1 - x])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*Simplify[m + n + 2])/((b*c - a*d)*(m + 1)), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rubi steps

\begin {align*} \int \frac {1}{(1-x)^{5/2} \sqrt {1+x}} \, dx &=\frac {\sqrt {1+x}}{3 (1-x)^{3/2}}+\frac {1}{3} \int \frac {1}{(1-x)^{3/2} \sqrt {1+x}} \, dx\\ &=\frac {\sqrt {1+x}}{3 (1-x)^{3/2}}+\frac {\sqrt {1+x}}{3 \sqrt {1-x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 23, normalized size = 0.56 \begin {gather*} -\frac {(x-2) \sqrt {x+1}}{3 (1-x)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((1 - x)^(5/2)*Sqrt[1 + x]),x]

[Out]

-1/3*((-2 + x)*Sqrt[1 + x])/(1 - x)^(3/2)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.06, size = 33, normalized size = 0.80 \begin {gather*} \frac {\sqrt {x+1} \left (\frac {x+1}{1-x}+3\right )}{6 \sqrt {1-x}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/((1 - x)^(5/2)*Sqrt[1 + x]),x]

[Out]

(Sqrt[1 + x]*(3 + (1 + x)/(1 - x)))/(6*Sqrt[1 - x])

________________________________________________________________________________________

fricas [A]  time = 1.20, size = 39, normalized size = 0.95 \begin {gather*} \frac {2 \, x^{2} - \sqrt {x + 1} {\left (x - 2\right )} \sqrt {-x + 1} - 4 \, x + 2}{3 \, {\left (x^{2} - 2 \, x + 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-x)^(5/2)/(1+x)^(1/2),x, algorithm="fricas")

[Out]

1/3*(2*x^2 - sqrt(x + 1)*(x - 2)*sqrt(-x + 1) - 4*x + 2)/(x^2 - 2*x + 1)

________________________________________________________________________________________

giac [A]  time = 0.64, size = 22, normalized size = 0.54 \begin {gather*} -\frac {\sqrt {x + 1} {\left (x - 2\right )} \sqrt {-x + 1}}{3 \, {\left (x - 1\right )}^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-x)^(5/2)/(1+x)^(1/2),x, algorithm="giac")

[Out]

-1/3*sqrt(x + 1)*(x - 2)*sqrt(-x + 1)/(x - 1)^2

________________________________________________________________________________________

maple [A]  time = 0.00, size = 18, normalized size = 0.44 \begin {gather*} -\frac {\sqrt {x +1}\, \left (x -2\right )}{3 \left (-x +1\right )^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-x+1)^(5/2)/(x+1)^(1/2),x)

[Out]

-1/3*(x+1)^(1/2)*(-2+x)/(-x+1)^(3/2)

________________________________________________________________________________________

maxima [A]  time = 3.12, size = 38, normalized size = 0.93 \begin {gather*} \frac {\sqrt {-x^{2} + 1}}{3 \, {\left (x^{2} - 2 \, x + 1\right )}} - \frac {\sqrt {-x^{2} + 1}}{3 \, {\left (x - 1\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-x)^(5/2)/(1+x)^(1/2),x, algorithm="maxima")

[Out]

1/3*sqrt(-x^2 + 1)/(x^2 - 2*x + 1) - 1/3*sqrt(-x^2 + 1)/(x - 1)

________________________________________________________________________________________

mupad [B]  time = 0.31, size = 43, normalized size = 1.05 \begin {gather*} \frac {x\,\sqrt {1-x}+2\,\sqrt {1-x}-x^2\,\sqrt {1-x}}{3\,{\left (x-1\right )}^2\,\sqrt {x+1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((1 - x)^(5/2)*(x + 1)^(1/2)),x)

[Out]

(x*(1 - x)^(1/2) + 2*(1 - x)^(1/2) - x^2*(1 - x)^(1/2))/(3*(x - 1)^2*(x + 1)^(1/2))

________________________________________________________________________________________

sympy [C]  time = 2.25, size = 139, normalized size = 3.39 \begin {gather*} \begin {cases} \frac {i \left (x + 1\right )}{3 i \sqrt {-1 + \frac {2}{x + 1}} \left (x + 1\right ) - 6 i \sqrt {-1 + \frac {2}{x + 1}}} - \frac {3 i}{3 i \sqrt {-1 + \frac {2}{x + 1}} \left (x + 1\right ) - 6 i \sqrt {-1 + \frac {2}{x + 1}}} & \text {for}\: \frac {2}{\left |{x + 1}\right |} > 1 \\- \frac {x + 1}{- 3 i \sqrt {1 - \frac {2}{x + 1}} \left (x + 1\right ) + 6 i \sqrt {1 - \frac {2}{x + 1}}} + \frac {3}{- 3 i \sqrt {1 - \frac {2}{x + 1}} \left (x + 1\right ) + 6 i \sqrt {1 - \frac {2}{x + 1}}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(1-x)**(5/2)/(1+x)**(1/2),x)

[Out]

Piecewise((I*(x + 1)/(3*I*sqrt(-1 + 2/(x + 1))*(x + 1) - 6*I*sqrt(-1 + 2/(x + 1))) - 3*I/(3*I*sqrt(-1 + 2/(x +
 1))*(x + 1) - 6*I*sqrt(-1 + 2/(x + 1))), 2/Abs(x + 1) > 1), (-(x + 1)/(-3*I*sqrt(1 - 2/(x + 1))*(x + 1) + 6*I
*sqrt(1 - 2/(x + 1))) + 3/(-3*I*sqrt(1 - 2/(x + 1))*(x + 1) + 6*I*sqrt(1 - 2/(x + 1))), True))

________________________________________________________________________________________